程序中记录日志的首要目的:Troubleshooting。通过记录程序中对外部系统与模块的依赖调用、重要状态信息的变化、关键变量、关键逻辑等,显示基于时间轴的程序运行轨迹,显示业务是否正常、是否存在非预期执行,在出问题时方便还原现场,推断程序运行过程、理清问题的方向。
本文将讨论在实现日志功能过程中常见的一些问题,包括基础API、格式化、日志转发及可视化等方面,代码采用Go语言描述。
一、Basic
1、后台输出
package mainimport ( "fmt")func main(){ fmt.Println("------hello world-----")}
2、There are no exceptions in Golang, only errors.
Go语言不支持传统的 try…catch…finally 这种异常,因为Go语言的设计者们认为,将异常与控制结构混在一起会很容易使得代码变得混乱。因为开发者很容易滥用异常,甚至一个小小的错误都抛出一个异常,替代方案是使用多值返回来返回错误。当然Go并不是全面否定异常的存在,或者用recover+panic语法实现,只是极力不鼓励多用异常。
package mainimport ( "log" "errors" "fmt")func main() { /* local variable definition */ ... /* function for division which return an error if divide by 0 */ ret,err = div(a, b) if err != nil { log.Fatal(err) } fmt.Println(ret)}
3、写入日志文件:
package mainimport ( "log" "os")func main(){ f,err :=os.OpenFile("test.log",os.O_WRONLY|os.O_CREATE|os.O_APPEND,0644) if err !=nil{ log.Fatal(err) } defer f.Close() log.SetOutput(f) log.Println("==========works==============")}
YRMacBook-Pro:go-log yanrui$ more test.log2017/05/24 21:46:25 ==========works==============
二、格式化
推荐日志工具库:logrus
$ go get github.com/Sirupsen/logrus
1、JSON format
package mainimport ( log "github.com/Sirupsen/logrus" "github.com/logmatic/logmatic-go")func main() { // use JSONFormatter log.SetFormatter(&logmatic.JSONFormatter{}) // log an event as usual with logrus log.WithFields(log.Fields{"string": "foo", "int": 1, "float": 1.1 }).Info("My first ssl event from golang")}
日志输出样式:
{ "@marker":["sourcecode","golang"], "date":"2017-05-24T15:27:40+08:00", "float":1.1,"int":1,"level":"info", "message":"My first ssl event from golang", "string":"foo"}
三、附加上下文
通过logrus库可以加入一些上下文信息,例如:主机名称,程序名称或者会话参数等。
contextLogger := log.WithFields(log.Fields{ "common": "XXX common content XXX", "other": "YYY special context YYY",})contextLogger.Info("AAAAAAAAAAAA")contextLogger.Info("BBBBBBBBBBBB")
日志输出样式:
YRMacBook-Pro:go-log yanrui$ go run LogMatic.go{"@marker":["sourcecode","golang"],"common":"XXX common content XXX","date":"2017-05-24T17:00:08+08:00","level":"info","message":"AAAAAAAAAAAA","other":"YYY special context YYY"}{"@marker":["sourcecode","golang"],"common":"XXX common content XXX","date":"2017-05-24T17:00:08+08:00","level":"info","message":"BBBBBBBBBBBB","other":"YYY special context YYY"}YRMacBook-Pro:go-log yanrui$
四、Hooks
我们还可以利用Hook机制实现日志功能扩展,例如Syslog hook,将输出的日志发送到指定的Syslog服务。
package mainimport ( log "github.com/sirupsen/logrus" "gopkg.in/gemnasium/logrus-airbrake-hook.v2" // the package is named "aibrake" logrus_syslog "github.com/sirupsen/logrus/hooks/syslog" "log/syslog")func main(){ hook, err := logrus_syslog.NewSyslogHook("udp", "59.37.0.1:514", syslog.LOG_INFO, "") if err != nil { log.Error("Unable to connect to local syslog daemon") } else { log.AddHook(hook) }}
验证是否发送Syslog:
$ sudo tcpdump | grep 59.37.0.1tcpdump: data link type PKTAPtcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on pktap, link-type PKTAP (Apple DLT_PKTAP), capture size 262144 bytes18:51:05.663612 IP 192.168.199.15.58819 > 59.37.0.1.syslog: SYSLOG kernel.info, length: 31418:51:05.663657 IP 192.168.199.15.58819 > 59.37.0.1.syslog: SYSLOG kernel.info, length: 314
五、可视化
在真实场景中日志数据体量非常庞大,日志存储只是第一步,更多的情况是需要查看特定指标或者能够快速检索信息,此时日志分析平台就发挥作用了。以logmatic为例,可以在它的官网注册
在使用logmatic之前,需要下载它的hook支持:
$ go get github.com/logmatic/logmatic-go
func main() { // instantiate a new Logger with your Logmatic APIKey // 国内访问比较慢 log.AddHook(logmatic.NewLogmaticHook("p53uTkOhSEqI3-116DynkQ")) // ..........}
效果如下:
更多精彩内容扫码关注公众号:RiboseYim's Blog: